
pypec Documentation
Release 0.1.1

Milan Skocic

Nov 08, 2023

CONTENTS

1 Getting Started 1

2 User Guide 3

3 Release Notes 7

4 Autogenerated Documentation 9

5 Bibliography 19

6 Indices and tables 21

Bibliography 23

Python Module Index 25

Index 27

i

ii

CHAPTER

ONE

GETTING STARTED

1.1 Description

pypec aims at fitting PEC data with an graphical interface.

In terminal enter the following command:

python -m pypec

A pdf version of the documentation can be found here pypec. The source code can be viewed on GitHub.

1.2 How to install

$ python setup.py install

or

$ pip install pypec

1.3 Dependencies

numpy>=1.17
scipy>=1.5
matplotlib>=3.0.0

1.4 License

GNU General Public License v3 (GPLv3)

1

http://www.github.com/MilanSkocic/PyPEC

pypec Documentation, Release 0.1.1

2 Chapter 1. Getting Started

CHAPTER

TWO

USER GUIDE

2.1 PhotoElectrochemistry

2.1.1 Basics

Photo-electrochemistry characterizations are used to study films at macroscopic, mesoscopic, and microscopic
scales. The latter advances were used to support (photo-)electrochemical studies of the electronic and optical
properties of passive films and oxidized metals, and of their interfaces with electrolytes, providing informations
on the nature and structure of these materials and to use properties such as the oxidation behaviour of a metallic
substrate.

Basically, two kinds of curves are recorded in the course of photoelectrochemical characterization experiments,
photocurrent voltammograms and photocurrent energy spectra. In photocurrent voltammograms, photocurrents
are measured as a function of the potential, 𝑉 , applied to the semiconducting electrode, at a given photon energy,
𝐸 = ℎ𝜈. In photocurrent energy spectra, photocurrents are recorded, at a given applied potential, V, as a function of
the photon energy, 𝐸. The analysis of the shapes of photocurrent voltammograms may allow to obtain informations
such as the semiconducting type of the material, the energy of the surface band levels, the presence of macroscopic
defects inducing photogenerated electron–hole pairs recombinations.

However, despite attempts to refine the Gartner-Butler model by taking into account surface or volume recombi-
nation, a complete description of the photocurrent voltammograms remains difficult, for the latter developments
make use of a high number of adjustable parameters, most of them being very difficult to assess. The analysis of
the photocurrent energy spectra is intended to identify the chemical nature of the material constituting the semi-
conducting electrode, through the value of their bandgap energies, 𝐸𝑔 as, on the one hand, bandgap energy values
have been reported in the literature for numerous compounds, and as, on the other hand, bandgap values may be
estimated from thermodynamic extensive atomic data. Practically, photocurrent energy spectra are usually ana-
lyzed by means of linear transforms to take benefit of the fact that, using the simplified form of the Gartner–Butler
model, the quantum yield, 𝜂, of the photocurrent is proportional to the light absorption coefficient.

In such conditions, 𝜂, obeys to the following relationship:

(𝜂 * 𝐸)1/𝑛 = 𝐾(𝐸 − 𝐸𝑔)

where 𝐶 is a constant (things other than 𝐸 being equal), 𝐸𝑔 is the bandgap energy of the semiconductor, and 𝑛
depends on the band to band transition type, 𝑛 = 1/2 for an allowed direct transition, and 𝑛 = 2 for an allowed
indirect transition. Direct transitions are rarely observed in more or less disordered thin oxide films.

3

pypec Documentation, Release 0.1.1

2.1.2 Fitting

Linear transformations were successfully performed for oxides made of one or two constituents. However, for
complex oxide scales formed of several p-type and n-type phases, the complete description of the photocurrent
energy spectra could not be achieved, and only semi-quantitative and/or partial informations could be obtained on
the oxides present in the scales.

As 𝐼*𝑃𝐻 is measured under modulated light conditions and thus actually is a complex number, the real and the imag-
inary parts of the photocurrent should be considered simultaneously when analyzing and fitting the photocurrent
energy spectra, rather than their modulus [1].

𝐼*𝑃𝐻 = |𝐼*𝑃𝐻 | cos 𝜃 + 𝑗|𝐼*𝑃𝐻 | sin 𝜃

𝐼*𝑃𝐻 =

𝑖=𝑁∑︁
𝑖

𝐽𝑃𝐻,𝑖 cos 𝜃𝑖 + 𝑗

𝑖=𝑁∑︁
𝑖

𝐽𝑃𝐻,𝑖 sin 𝜃𝑖
(2.1)

where 𝐽𝑃𝐻,𝑖 and 𝜃𝑖 represent the modulus and phase shift, respectively, of the photocurrent issued from the ith
semiconducting constituent of the oxide layer. For thin semiconducting films, the space charge regions are low
compared to penetration depth of the light. 𝐽𝑃𝐻,𝑖 may thus be expected, at a given applied potential, to follow the
simplified form of the Gartner–Butler model.

(𝐽𝑃𝐻,𝑖 * 𝐸)1/𝑛 = 𝐾𝑖(𝐸 − 𝐸𝑔,𝑖)

where 𝐸𝑔,𝑖 and 𝐾𝑖 represent the energy gap and a value proportional to 𝐶 (𝐼*𝑃𝐻 * is proportional to but not equal
to 𝜂) for the ith semiconducting constituent.

For a given vector of 𝑚 (𝐾𝑖, 𝜃𝑖, 𝐸𝑔,𝑖) triplets, 𝑚 representing the supposed number of semiconducting phases
contributing to the photocurrent, the scalar function to be minimized by the Nelder-Mead function was defined as
the product of the square roots of two quantities:

𝐷𝑅𝑒 =

√︃∑︁
𝐸

(𝑅𝑒𝐼*𝑃𝐻,𝑒𝑥𝑝 −𝑅𝑒𝐼*𝑃𝐻,𝑐𝑎𝑙𝑐)
2

𝐷𝐼𝑚 =

√︃∑︁
𝐸

(𝐼𝑚𝐼*𝑃𝐻,𝑒𝑥𝑝 − 𝐼𝑚𝐼*𝑃𝐻,𝑐𝑎𝑙𝑐)
2

𝐷 = 𝐷𝑅𝑒.𝐷𝐼𝑚

The 3 𝑚 variables can be locked or not by the user. Initial estimates can be provided by the user or can be randomly
generated. Several successive calls of the Nelder-Mead procedure are necessary to reach the minimum of the scalar
function and a stable set of the output parameters. The user is free to set the number of successive calls of the
Nelder-Mead procedure. Constraints on the 3 𝑚 variables can be set by the user.

2.2 GUI

The main window contains all the elements necessary to run the fit. The design is cluttered but it allows exposing
directly all the fitting settings to the user without deep menus.

The different steps, presented in the left pane, for performing the fit are:

• load data: the accepted formats are:

– *.dot files files which are ascii files developped in the SiMaP Lab

– *.data files files which are generic ascii files

• set the number of semiconductive contributions (Parameter Table)

At this point the fit can be ran.

If needed select custom choice for all the fitting parameter in the left pane.

4 Chapter 2. User Guide

pypec Documentation, Release 0.1.1

2.2.1 *.dot files

They have a specific formating and they are provided by the PEC setup in the SiMaP Lab.

2.2.2 *.data files

The *.data files are generic ascii files where:

• the first column is the energy of the incident light in eV.

• the second column is the modulus of the photocurrent in A.

• the thrid column is the phase shift of the photocurrent in degrees.

2.2.3 Parameter Table

The parameter table allows for fitting the 3m variables. The table is structured as shown below:

Ki Fit Kgi theta i Fit Phase i Egi Fit Egi
K 1 0 or 1 Phase 1 0 or 1 Eg 1 0 or 1
K 2 0 or 1 Phase 2 0 or 1 Eg 2 0 or 1
...
K n 0 or 1 Phase n 0 or 1 Eg n 0 or 1

Each parameter 𝐾𝑖, 𝜃𝑖 and 𝐸𝑔𝑖 can be locked by setting the Fit X column to 0.

2.2. GUI 5

pypec Documentation, Release 0.1.1

6 Chapter 2. User Guide

CHAPTER

THREE

RELEASE NOTES

3.1 pypec 0.1.1 Release Note

3.1.1 Summary

• Switch to pyproject.toml.

3.1.2 Download

pypec

3.1.3 Contributors

Milan Skocic

3.1.4 Commits

Full Changelog: https://github.com/MilanSkocic/pypec/compare/0.1.0. . . 0.1.1

3.2 pypec 0.1 Release Notes

3.2.1 Highlights

pypec aims at fitting PEC data with an graphical interface. The program was initially developped in Python 2.7
during my PhD from 2012 to 2015.

In 2016, the code was rewritten in Python 3 at the end of my PhD with slight modifications of the original code.
The code remained untouched for almost 3 years and is now again under development in this repository.

This is the first release after migrating to github which will serve as a backup for the version developed during my
PhD with completed documentation. No modification to the original code.

7

https://pypi.org/project/pypec
https://github.com/MilanSkocic/pypec/compare/0.1.0...0.1.1

pypec Documentation, Release 0.1.1

3.2.2 New Features

• Load data: *.dot files (data format developped in Grenoble Lab SiMaP)

• multi-process fitting: N processes x M fits x L loops

• automatic creation of result folder based on sample name and fitting parameters

• results saved in a folder

3.2.3 Download

pypec

3.2.4 Contributors

Milan Skocic

3.2.5 Commits

Full Changelog: https://github.com/MilanSkocic/pypec/compare/. . . .0.1.0

8 Chapter 3. Release Notes

https://pypi.org/project/pypec
https://github.com/MilanSkocic/pypec/compare/....0.1.0

CHAPTER

FOUR

AUTOGENERATED DOCUMENTATION

4.1 Graphical FrontEnd

Graphical frontend for fitting photo-current spectra.

class pypec.Analyse_PEC.Analyse_PEC(master=None)
Construct a frame widget with the parent MASTER.

Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, high-
lightbackground, highlightcolor, highlightthickness, relief, takefocus, visual, width.

Methods

update_nb_runs() Update the number of cpu and run per process on
the graphical interface.

AddFiles_cb
Fit_cb
ask_quit
autoscale
create_fit_lines
get_progress
on_Run_Fit
on_hv_limits
on_start_workers
on_stop_button
plot_Graph
plot_Re_Im
plot_fit_lines
plot_ligne_V
prm_binary
process_queue
remove_fit_folder
remove_fit_lines
start
update_figure
update_legend
update_nb_fit_in_run

AddFiles_cb()

Fit_cb()

9

pypec Documentation, Release 0.1.1

ask_quit()

autoscale(chart)

create_fit_lines()

get_progress(run=1, fit=0)

on_Run_Fit()

on_hv_limits(*args)

on_start_workers()

on_stop_button()

plot_Graph()

plot_Re_Im()

plot_fit_lines(*args)

plot_ligne_V()

prm_binary()

process_queue()

remove_fit_folder()

remove_fit_lines()

start()

update_figure()

update_legend(axes, run=1, fit=0, location='upper left')

update_nb_fit_in_run()

update_nb_runs()

Update the number of cpu and run per process on the graphical interface.

class pypec.Analyse_PEC.ParameterTable(master, prm, last_prm_folder, **kwargs)
Construct a frame widget with the parent MASTER.

Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, high-
lightbackground, highlightcolor, highlightthickness, relief, takefocus, visual, width.

class pypec.Analyse_PEC.ParameterWindow(master, prm_init, last_prm_folder)
Construct a toplevel widget with the parent MASTER.

Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, high-
lightbackground, highlightcolor, highlightthickness, menu, relief, screen, takefocus, use, visual, width.

10 Chapter 4. Autogenerated Documentation

pypec Documentation, Release 0.1.1

Methods

get_paths
get_prm

get_paths()

get_prm()

class pypec.Analyse_PEC.ScrolledFrame(master, **kwargs)
Construct a frame widget with the parent MASTER.

Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, high-
lightbackground, highlightcolor, highlightthickness, relief, takefocus, visual, width.

4.2 Iph Functions

Modules - Iph Functions

This module contains functions requiered for computing and optimizing the photo-current values from input pa-
rameters i.e. triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖) and experimental data for each semi-conductive phase [1].

pypec.iph_functions.get_Iph_calc(hv, prm_array, phi_N)
Compute the complex values of 𝐼𝑝ℎ based on the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖) [1].

𝐼𝑝ℎ* =
𝐼𝑝ℎ

Φ𝑁

Parameters

hv: 1d array
Vector of energies for which the complex 𝐼𝑝ℎ has to be computed.

prm_array: 2d array
Represents the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

phi_N: 1d array
Represents the values of the normalized photon flux to the maximum value. If nphf is a
unity vector, the true photo-current is returned otherwise the as-measured photo-current
is returned.

Returns

iph_calc_complex: 1d array
Vector of the computed complex values of 𝐼𝑝ℎ.

pypec.iph_functions.get_LCC(iph_exp_complex, iph_calc_complex)

pypec.iph_functions.get_distance(iph_exp_complex, iph_calc_complex)
Compute the distance𝐷 between 𝐼𝑝ℎ𝑒𝑥𝑝 and 𝐼𝑝ℎ𝑐𝑎𝑙𝑐. The distance is computed by multiplying the distances
on real and imaginary parts of 𝐼𝑝ℎ:

∆𝑅𝑒 = 𝑅𝑒 𝐼𝑝ℎ𝑒𝑥𝑝 −𝑅𝑒 𝐼𝑝ℎ𝑐𝑎𝑙𝑐

∆𝐼𝑚 = 𝐼𝑚 𝐼𝑝ℎ𝑒𝑥𝑝 − 𝐼𝑚 𝐼𝑝ℎ𝑐𝑎𝑙𝑐

𝐷𝑅𝑒 =
√︁∑︁

∆𝑅𝑒2

𝐷𝐼𝑚 =
√︁∑︁

∆𝐼𝑚2

𝐷 = 𝐷𝑅𝑒 ·𝐷𝐼𝑚

4.2. Iph Functions 11

pypec Documentation, Release 0.1.1

Parameters

iph_exp_complex: 1d numpy array
Contains the complex values of the 𝐼𝑝ℎ𝑒𝑥𝑝.

iph_calc_complex: 1d numpy array
Contains the complex values of the 𝐼𝑝ℎ𝑐𝑎𝑙𝑐.

Returns

D: float
The computed distance on real and imaginary parts of 𝐼𝑝ℎ:.

pypec.iph_functions.get_exp_data(filepath)
Get the data array of data files according to their extension.

Supported files are .dot files recorded by PECLab software and .data files were the first three columns rep-
resent ℎ𝜈, |𝐼𝑝ℎ*|, 𝜃.

Parameters

filepath: string
Path to the data file.

Returns

data_array: 2d array
Experimental data.

pypec.iph_functions.get_header_footer_dot_file(filepath)
Find the number of lines in header and footer in .dot files.

Parameters

filepath: path to the dot file

Returns

skip_header: int
number of lines in header

skip_footer: int
number of lines in footer

nbpoints: int
number of data lines

pypec.iph_functions.get_random_prm_values(prm_array, K_bound=(1e-12, 0.1), theta_bound=(-180.0,
180.0), Eg_bound=(0.1, 6.2), phase_flag=True)

Generates random values for the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖) to be fitted based on the states given by the prm_array.

By default, the limits are:

• 𝐾𝑖: [10−12, 10−1]

• 𝜃𝑖: [−𝜋,+𝜋]

• 𝐸𝑔𝑖: [0.1, 6.0]

Parameters

prm_array: 2d array
Represents the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

K_bound:tuple
Contains the lower and upper limits for the 𝐾𝑖 values.

theta_bound: tuple
Contains the lower and upper limits for the 𝜃𝑖 values.

12 Chapter 4. Autogenerated Documentation

pypec Documentation, Release 0.1.1

Eg_bound:tuple
Contains the lower and upper limits for the 𝐸𝑔𝑖 values.

phase_flag: bool
Indicates if the values of 𝜃𝑖 have to be randomized.

Returns

random_prm_array: 2d array
Represents the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

pypec.iph_functions.get_results_array(hv, iph_exp_complex, iph_calc_complex)
Build the data array of the experimental and calculated data: ℎ𝜈, |𝐼𝑝ℎ𝑒𝑥𝑝|, 𝜃𝑒𝑥𝑝, |𝐼𝑝ℎ𝑐𝑎𝑙𝑐| and 𝜃𝑐𝑎𝑙𝑐

Parameters

hv: 1d numpy array
Contains the energy vector.

iph_exp_complex: 1d array
Contains the complex values of 𝐼𝑝ℎ𝑒𝑥𝑝.

iph_calc_complex: 1d array
Contains the complex values of 𝐼𝑝ℎ𝑐𝑎𝑙𝑐.

Returns

data_array: 2d array
Array containing the .

pypec.iph_functions.get_summary(fit_folder)
List result files for the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖) at the end and the minimum of each run.

Compute the distance, the LCCs for the energy interval that was used for minimizing the the triplets
(𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

The results are saved in 4 files: .SumEnd, .SumEndEg, *.SumMin, *.SumMinEg.

Parameters

fit_folder: string
Path of the fit folder.

pypec.iph_functions.import_prm_file(filepath)
Import the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖) from text file where each line represents a contributing semi-conductive
phase.

Parameters

filepath: string
Absolute or relative file path to the text file.

Returns

prm_array: 2d array
Represents the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

pypec.iph_functions.minimize(hv, iph_exp_complex, phi_N , weights, prm_array, Ki_log_flag=True,
maxiter=None, maxfun=None, xtol=1e-11, ftol=1e-23, full_output=True,
retall=False, disp=False, callback=None)

Execute the Nelder-Mead algorithm based on parameter values given by prm_array and energy vector ℎ𝜈.

First, the prm_array is flattened and the parameters (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖) to be fitted are extracted and sent to the
target_function() through the Nelder-Mead algorithm.

Once the parameters were computed by the Nelder-Mead algorithm, the prm_array is updated with the
new values.

Parameters

4.2. Iph Functions 13

pypec Documentation, Release 0.1.1

hv: 1d numpy array
Contains the energy vector.

iph_exp_complex: 1d numpy array
Contains the complex values of the experimental photo-current.

phi_N: 1d array
Contains the normalized photon spectrum.

weights: 1d array
Contains the weights of the data.

prm_array: 2d array
Represents the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

Ki_log_flag: bool
Indicates if the 𝐾𝑖 values are in logarithmic space.

maxiter
[int, optional] Maximum number of iterations to perform.

maxfun
[number, optional] Maximum number of function evaluations to make.

xtol
[float, optional] Relative error in xopt acceptable for convergence.

ftol
[number, optional] Relative error in func(xopt) acceptable for convergence.

full_output
[bool, optional] Set to True if fopt and warnflag outputs are desired.

retall
[bool, optional] Set to True to return list of solutions at each iteration.

disp
[bool, optional] Set to True to print convergence messages.

callback
[callable, optional] Called after each iteration, as callback(xk), where xk is the current
parameter vector.

Returns

prm_array: 2d array
Represents the updated values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

fopt
[float] Value of function at minimum: fopt = func(xopt).

pypec.iph_functions.plot_summary(fit_folder)
Plot the result files that were created by the get_summary() for he triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖) at the end and the
minimum of each run.

The results are saved in 2 files: -0-End.pdf, -0-Min.pdf.

Parameters

fit_folder: string
Path of the fit folder.

pypec.iph_functions.save_pdf(filepath, hv, iph_exp_complex, iph_calc_complex, mask, all_results)

pypec.iph_functions.save_results(run, process_id, fit_folder, datafilepath, suffix, hv, mask,
iph_exp_complex, phi_N , prm_min_run, prm_end_run,
distance_min_run, distance_end_run, minimization_results,
header_minimization_results)

14 Chapter 4. Autogenerated Documentation

pypec Documentation, Release 0.1.1

pypec.iph_functions.scatter_logpolar(ax, theta, r_, ticks=5, bullseye=0.0, **kwargs)

pypec.iph_functions.shift_phase(prm_array, theta_bound=(-180.0, 180.0))
Compute the modulo of 𝜃𝑖 values with 2𝜋 and then shift the values of 𝜃𝑖 by the amplitude of the boundaries
in order to be in between the boundaries.

By default, the boundaries for 𝜃𝑖 are set to [−𝜋,+𝜋].

Parameters

prm_array: 2d array
Represents the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

theta_bound: tuple
Contains the lower and upper limits for the :math`theta _i` values.

Returns

prm_array: 2d array
Represents the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖) where the 𝜃𝑖 values were
shifted.

pypec.iph_functions.sort_prm_Eg(prm_array)
Sort the prm_array based on values of 𝐸𝑔𝑖.

Parameters

prm_array: 2d array
Represents the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

Returns

prm_array: 2d array
Represents the sorted values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

pypec.iph_functions.target_func(p, hv, prm_array, iph_exp_complex, phi_N , weights,
Ki_log_flag=True)

Update the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖) from the flattened parameter vector p sent by the optimization algorithm.
The prm_arraywill be flattened and the indexes of the parameters to be fitted will be updated with p vector.

The calculated complex values of 𝐼𝑝ℎ will be sent along the experimental values to the get_distance()
function. The value of the distance between the experimental and calculated data will sent back to the
optimization algorithm.

Parameters

p: 1d array
Parameter vector sent by the optimization algorithm which is always. flattened.

hv: 1d array
Vector of energies for which the complex values of 𝐼𝑝ℎ have to be calculated.

prm_array: 2d array
Represents the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

iph_exp_complex: 1d numpy array
Contains the complex values of the experimental 𝐼𝑝ℎ.

phi_N: 1d array
Represents the values of the normalized photon flux to the maximum value.

weights: 1d array
Contains the values of the data weights.

Ki_log_flag: bool
Indicates if the 𝐾𝑖 values are in logarithmic space.

Returns

4.2. Iph Functions 15

pypec Documentation, Release 0.1.1

distance: float
Calculated distance between experimental and calculated data values. See the
get_distance() function.

pypec.iph_functions.validate_prm(prm_array, K_bound=(1e-12, 0.1), Eg_bound=(0.1, 6.2))
Check if the values of 𝐾𝑖 and 𝐸𝑔𝑖 are within the boundaries.

Parameters

prm_array: 2d array
Represents the values and states of the triplets (𝐾𝑖, 𝜃𝑖, 𝐸𝑔𝑖).

K_bound:tuple
Contains the lower and upper limits for the 𝐾𝑖 values.

Eg_bound:tuple
Contains the lower and upper limits for the 𝐸𝑔𝑖 values.

Returns

valid: bool
Set to True if value of 𝐾𝑖 or 𝐸𝑔𝑖 is out of the boundaries.

4.3 Parallel Processes

Module for controlling the parallel processes running during the fitting procedure

class pypec.Parallel_Process.MinimizationProcess(output_queue, name, prm_init, nb_run, nb_SC,
init_type, random_loops, hv, iph_exp_complex,
iph_exp_complex_CI , phi_N , phi_N_CI ,
weights, hv_limits, nb_fit_in_run, fit_folder,
filepath, suffix, NelderMead_options=(1e-11,
1e-23, 200, 200),
ParameterConstraints=((1e-12, 0.1), (-180,
180), (0.1, 6.2), True), update_every=5)

Methods

run() Method to be run in sub-process; can be overridden
in sub-class

shutdown

run()

Method to be run in sub-process; can be overridden in sub-class

shutdown()

class pypec.Parallel_Process.PlotSummaryProcess(fit_folder)

Parameters

fit_folder: str
Path to the folder where the summary files will be saved.

Attributes

fit_folder: str
Path to the folder where the summary files will be saved.

16 Chapter 4. Autogenerated Documentation

pypec Documentation, Release 0.1.1

Methods

run() Method to be run in sub-process; can be overridden
in sub-class

run()

Method to be run in sub-process; can be overridden in sub-class

pypec.Parallel_Process.get_cpu_number()

DocString

pypec.Parallel_Process.get_queue()

DocString

pypec.Parallel_Process.initialize_processes(n, daemon=True, **kwargs)
Create N processes as daemons and return them in a list.

Parameters

n: int
Number of processes to be created.

daemon: bool
Flag for creating daemon process.

kwargs: dict
See MinimizationProcess

pypec.Parallel_Process.start_processes(workers)

Parameters

workers: subprocess workers

Returns

0: return integer

4.3. Parallel Processes 17

pypec Documentation, Release 0.1.1

18 Chapter 4. Autogenerated Documentation

CHAPTER

FIVE

BIBLIOGRAPHY

5.1 Bibliography

19

pypec Documentation, Release 0.1.1

20 Chapter 5. Bibliography

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

21

pypec Documentation, Release 0.1.1

22 Chapter 6. Indices and tables

BIBLIOGRAPHY

[1] Photoelectrochemistry of Oxidation Layers: A Novel Approach to Analyze Photocurrent Energy Spectra. Petit,
jp., boichot, r., loucif, a. et al. Oxidation of Metals, 2013.

23

pypec Documentation, Release 0.1.1

24 Bibliography

PYTHON MODULE INDEX

p
pypec.Analyse_PEC, 9
pypec.iph_functions, 11
pypec.Parallel_Process, 16

25

pypec Documentation, Release 0.1.1

26 Python Module Index

INDEX

A
AddFiles_cb() (pypec.Analyse_PEC.Analyse_PEC

method), 9
Analyse_PEC (class in pypec.Analyse_PEC), 9
ask_quit() (pypec.Analyse_PEC.Analyse_PEC

method), 9
autoscale() (pypec.Analyse_PEC.Analyse_PEC

method), 10

C
create_fit_lines()

(pypec.Analyse_PEC.Analyse_PEC method),
10

F
Fit_cb() (pypec.Analyse_PEC.Analyse_PEC

method), 9

G
get_cpu_number() (in module

pypec.Parallel_Process), 17
get_distance() (in module pypec.iph_functions), 11
get_exp_data() (in module pypec.iph_functions), 12
get_header_footer_dot_file() (in module

pypec.iph_functions), 12
get_Iph_calc() (in module pypec.iph_functions), 11
get_LCC() (in module pypec.iph_functions), 11
get_paths() (pypec.Analyse_PEC.ParameterWindow

method), 11
get_prm() (pypec.Analyse_PEC.ParameterWindow

method), 11
get_progress() (pypec.Analyse_PEC.Analyse_PEC

method), 10
get_queue() (in module pypec.Parallel_Process), 17
get_random_prm_values() (in module

pypec.iph_functions), 12
get_results_array() (in module

pypec.iph_functions), 13
get_summary() (in module pypec.iph_functions), 13

I
import_prm_file() (in module pypec.iph_functions),

13
initialize_processes() (in module

pypec.Parallel_Process), 17

M
MinimizationProcess (class in

pypec.Parallel_Process), 16
minimize() (in module pypec.iph_functions), 13
module
pypec.Analyse_PEC, 9
pypec.iph_functions, 11
pypec.Parallel_Process, 16

O
on_hv_limits() (pypec.Analyse_PEC.Analyse_PEC

method), 10
on_Run_Fit() (pypec.Analyse_PEC.Analyse_PEC

method), 10
on_start_workers()

(pypec.Analyse_PEC.Analyse_PEC method),
10

on_stop_button() (pypec.Analyse_PEC.Analyse_PEC
method), 10

P
ParameterTable (class in pypec.Analyse_PEC), 10
ParameterWindow (class in pypec.Analyse_PEC), 10
plot_fit_lines() (pypec.Analyse_PEC.Analyse_PEC

method), 10
plot_Graph() (pypec.Analyse_PEC.Analyse_PEC

method), 10
plot_ligne_V() (pypec.Analyse_PEC.Analyse_PEC

method), 10
plot_Re_Im() (pypec.Analyse_PEC.Analyse_PEC

method), 10
plot_summary() (in module pypec.iph_functions), 14
PlotSummaryProcess (class in

pypec.Parallel_Process), 16
prm_binary() (pypec.Analyse_PEC.Analyse_PEC

method), 10
process_queue() (pypec.Analyse_PEC.Analyse_PEC

method), 10
pypec.Analyse_PEC
module, 9

pypec.iph_functions
module, 11

pypec.Parallel_Process
module, 16

27

pypec Documentation, Release 0.1.1

R
remove_fit_folder()

(pypec.Analyse_PEC.Analyse_PEC method),
10

remove_fit_lines()
(pypec.Analyse_PEC.Analyse_PEC method),
10

run() (pypec.Parallel_Process.MinimizationProcess
method), 16

run() (pypec.Parallel_Process.PlotSummaryProcess
method), 17

S
save_pdf() (in module pypec.iph_functions), 14
save_results() (in module pypec.iph_functions), 14
scatter_logpolar() (in module

pypec.iph_functions), 14
ScrolledFrame (class in pypec.Analyse_PEC), 11
shift_phase() (in module pypec.iph_functions), 15
shutdown() (pypec.Parallel_Process.MinimizationProcess

method), 16
sort_prm_Eg() (in module pypec.iph_functions), 15
start() (pypec.Analyse_PEC.Analyse_PEC method),

10
start_processes() (in module

pypec.Parallel_Process), 17

T
target_func() (in module pypec.iph_functions), 15

U
update_figure() (pypec.Analyse_PEC.Analyse_PEC

method), 10
update_legend() (pypec.Analyse_PEC.Analyse_PEC

method), 10
update_nb_fit_in_run()

(pypec.Analyse_PEC.Analyse_PEC method),
10

update_nb_runs() (pypec.Analyse_PEC.Analyse_PEC
method), 10

V
validate_prm() (in module pypec.iph_functions), 16

28 Index

	Getting Started
	Description
	How to install
	Dependencies
	License

	User Guide
	PhotoElectrochemistry
	Basics
	Fitting

	GUI
	*.dot files
	*.data files
	Parameter Table

	Release Notes
	pypec 0.1.1 Release Note
	Summary
	Download
	Contributors
	Commits

	pypec 0.1 Release Notes
	Highlights
	New Features
	Download
	Contributors
	Commits

	Autogenerated Documentation
	Graphical FrontEnd
	Iph Functions
	Parallel Processes

	Bibliography
	Bibliography

	Indices and tables
	Bibliography
	Python Module Index
	Index

